If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2=16w
We move all terms to the left:
4w^2-(16w)=0
a = 4; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*4}=\frac{0}{8} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*4}=\frac{32}{8} =4 $
| 1/5x+8=15 | | (2x+6/x+4)=(12/3) | | X^2-2x+(x+2)(x-3)=180 | | 1/3c-2=5c-30 | | -15n+11=-14n-18 | | 3x-12+×+38=90 | | f(4)=4-3. | | 3x-38+7x-95=189 | | 9=6•x/10 | | -3x(-5)=-16 | | -2+9=13x-5-12x | | 4y-3=81 | | R=4x=16 | | 1/3c-2=5c-30c=6 | | -3(2x+4)+x=2(1-4x)-14+2x | | 0=x/5 | | -38-2a=5(8a+2)-6 | | 18-3.8x=7.36-19.6x | | 4(b)=3/5 | | C=61/3c-2=5c-30 | | 2m-+12=3m-31 | | F(x)=x³-2 | | -1-2u-9-(-5u)=0 | | -4-8r=1-7r | | 5/2=120/v | | /C=61/3c-2=5c-30 | | -5a+54=(-4a+13.89 | | 2/3x=62/5 | | 23=x2+7 | | 3(x+2)-7=2 | | y-4=2y-12=2y-12 | | 5b-63b=6b-21 |